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Chemica l  reac t ions  induce changes in v i scos i ty ,  this  effect  being quite pronounced in the case 
of  po lymer iza t ion  p r o c e s s e s .  The fact that  the coefficient  of v i scos i ty  changes as the degree  
of chemica l  advancement  i n c r e a s e s  gives r i se  to specif ic  hydrodynamic  e f fec t s  in a flowing 
liquid. Some of these  effects  a re  d iscussed  in the p resen t  pape r .  

1. Le t  us cons ider  the passage  of the reac t ing  liquid through a tube.  Let  us designate by z 0 the tube 
length, by P0 the p r e s s u r e  drop through the tube, by v the bulk flow ra te  p e r  unit tube c r o s s  section,  by t o 
the cha r ac t e r i s t i c  reac t ion  t ime ,  by p, ~0, and # ,  the instantaneous,  initial,  and final coeff ic ients  of v i s -  
cosi ty ,  the l a t t e r  m e a s u r e d  at the end of the react ion,  by r the tube radius ,  by z a dis tance m e a s u r e d  f rom 
the tube en t rance ,  and by ~ the degree  of advancement  of the reac t ion .  Le t  the liquid densi ty be cons idered  
as constant ,  so that  v becomes  identical  with the mean  flow ra te .  

Le t  us  introduce the quant i t ies  

( = ~0t/\8 ~ X 

x being the d imens ion less  p r e s s u r e  drop along the tube, co the d imens ion less  s ta t ionary  flow ra te ,  and 0 
the d imens ion less  t ime  of s t eady- s t a t e  pas sage  of the liquid through the tube.  

In genera l ,  the p r e s s u r e  drop and the flow ra te  a re  re la ted  by the equation 

• (1.2) 

k being the dimensionless coefficient of resistance to liquid flow, a factor determined by the instantaneous 
viscosity distribution in the tube. If the viscosity is constant and the flow laminar, the Poiseuille law [1] 
requires that k=l. 

A stationary flow will be established under constant pressure drop or flow rate. Here the value of k 
will be a function of 0, the time of passage of the liquid through the tube, i.e., 

~= ~(o), (1,3) 

and can be de te rmined  exper imen ta l ly .  

The lack of t h e r m a l  homogenei ty  in liquids undergoing exo the rmic  reac t ion  can r ende r  F(0 ) inde te r -  
minate .  Since, however ,  the c h a r a c t e r i s t i c  a spec t s  of the effects  in quest ion here  can be brought  out by 
study of s imple  s y s t e m s ,  attention will be l imi ted  to the case  in which F(0 ) is well  defined. 

2. Le t  us now cons ider  the liquid flow under  a constant  p r e s s u r e  drop.  Here  the s ta t ionary  flow ra te  
can be obtained by combining (1.2) and (1.3) to get 

z0=F(0). (2.1) 

Working in a 0, X coordinate  sys t em,  the solution of this  equation is r e p r e s e n t e d  by the point of i n t e r s e c -  
t ion of the graphing function curve  k = F(0 ) and a s t ra ight  line of slope x pass ing  through the origin.  
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Stationary flow can be established under any pressure  drop, which is to say that there will be a solu-  
tion of Eq. (2.1) for each value of ~. In cer tain cases ,  however, the solution of Eq. (2.1) will not be single 
valued. Let us now consider  a situation of this type. 

If Eq. (2.1) does have a single valued solution for each value of ~, the stat ionary fl0w rate will be a 
continuous function of the p ressu re  drop; with a co r rec t  choice of drop value one can assure  any desired 
value of the t ime of t ransi t  of the liquid through the tube, or,  what is the same thing, any desired value of 
the degree of react ion advancement in the tube discharge.  

Let it now be supposed that Eq. (2.1) has three different solutions with ~ < ~ < ~2. Graphically this 
is equivalent to saying that lines with these ~ values each cut through the plotting function graph k = F(0) 
at three points (Fig. 1). Lines passing through the origin with slopes ~1 and ~ will each cut through the 

= F(0) curve at one point and be tangent to it at another.  P a r a m e t e r  values for the points of tangency 
will be indicated by the use of subscripts  1 and 2, while p a r a m e t e r  values for an intersect ion point will be 
indicated by a super  pr ime.  

Here the values of ~, @ satisfying Eq. (2.1) will plot up to a charac te r i s t i c  S-curve in the coordinates 
~ ,  ~o=O -~ (Fig. 2). It is c lear  that the s tat ionary value of co will approach w 1 by moving along the upper 
branch of this curve as ~< falls and approaches ~<1. Even an infinitesmal reduction of ~ beyond this 
point must lead to a discontinuous alteration in the stat ionary value of r passage being f rom ~ = ~ l  
to w=r 1 <w 1. The stat ionary value of r is found on the lower branch of the S-curve for low ~ ' s  such 
that ~< us, remaining on this branch as ~< r i ses  to u = ~ >  ~<1- From this it can be concluded that 
there  is an alteration in s tat ionary states on passing through the interval ~<l< ~<  ~<2,the controll ing 
factor  being the direction of passage through this region. The passage f rom lower to upper branch 
of the S-curve occurs  at ~<=~<2 and is accompanied by a discontinuous al terat ion in w, change being 
from co to co=co,~ >~a2, with a corresponoing alteration in the degree of advancement of the chemical  react ion 
in the tube discharge.  

Thus the existence of three solutions for Eq. (2.1) leads to hys te res i s  effects in the functional de- 
pendence of the liquid flow rate,  the time required for passage through the tube, and the degree of advance-  
ment of react ion in the tube discharge on the p ressure  drop. 

The p res su re  drop corresponding to a discontinuous decrease ,  or  a discontinuous increase,  in the 
flow rate will be designated as a lower, or  upper, cr i t ical  value, as the case may be. For  fixed flow rate, 
these c r i t ica l  values correspond,  respectively,  to minima and maxima on the curve showing s ta t ionary 
p r e s su red  drop plotted as a function of rate .  
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Stat ionary s ta tes  co r respond ing  to points lying between the two b ranches  of the S-curve  of Fig. 2 can - 
not be reached  by a l t e r ing  the p r e s s u r e  drop.  These  s ta tes  a re  also inaccess ib le  to flow at fixed p r e s s u r e  
drop.  

3. A s imple  one-d imens iona l  model  can be used to i l lus t ra te  these  points .  

Let  us a s sume  the t e m p e r a t u r e ,  concentrat ion,  and v i scos i ty  to each  be constant,  o v e r  the tube c ro s s  
section,  as is genera l ly  done in set t ing up a one-d imens iona l  model  of the tubula r  r e ac to r .  Supposing the 
flow to be s ta t ionary  and laminar ,  the p r e s s u r e  gradient  dP /dz  is given by [1] 

dP / dz=--8}tI:  to (3.1) 

In tegra t ing  (3.1) along the tube, and introducing the d imens ion less  p a r a m e t e r s  of (1.1), leads to 

2$ 
X = j ~ d z / ~ o z  o, (3.2) 

0 

i .e . ,  X becomes  identical  with the d imens ion less  v i scos i ty .  

Le t  us now as sume  an i so the rma l  flow in which ef fec ts  f rom t r a n s v e r s e  diffusion can be neglected.  
In the s teady state,  the degree  of advancement  of the reac t ion  and the liquid v i scos i ty  at any point will be 
de te rmined  by z /v ,  the t ime  requ i red  for  the liquid to r each  the sect ion in quest ion.  Here  the z / v  depend-  
ence of the v i scos i ty  is of exact ly  the same fo rm as the t ime  dependence of the degree  of advancement  in 
a s t a t ionary  liquid, this l a t t e r  wr i t ten  as 

tt = .%1(~), (3.3) 

with ~'=t/t0; f ( 0 ) = 1 ;  f(~ By combining (3.2) and (3.3), one obtains the following expres s ion  for  the 
F(0) function of (1.3): 

~" (0) = 0 -~ ~ / (~) d~, F(0) =1, F(~)=,~ ,~,o. 
0 

Let  us rewr i te  the exp re s s ion  for  the t ime  dependence of the v iscos i ty ,  i .e. ,  (3.3), in the fo rm 

vt :Vt0=/(z) = i+6/o(~), (3.4) 

6 = ( p ,  -#0) / /z0  being the re la t ive  a l te ra t ion  in the v iscos i ty ,  and f0(1-) a function descr ib ing  the t ime  v a r i a -  
t ion of this l a t t e r  quantity,  with f0(0) =0, f0(oo)=1. For  low values of ~, the re la t ion  between the v i scos i ty  
and the degree  of advancement  of the reac t ion  can be approximated  by a power  function. Let  us  now en t e r  
(3.4), set t ing 

and consider ing a f i r s t - o r d e r  reac t ion  with 

The resul t ing  equation will have the fo rm 

/0=~1 v, v<') (3.5) 

,hi/dr= i- ,I .  (3.6) 

d Zf/d~ 2= 8vq  v - 2 ( 1 - ~ / ) ( v -  l - - q v ) .  

Assume  v >1 and 5 >0. Since ~ < ( v - 1 ) / v  d2f/dz 2 >0, and 

0 
d2F 0--3 2 d2] , 
dO 2 -- .t' z ~ a~, 

o 

the function F(0) is convex downward for  sma l l  values  of 0, and d2F/d0 2 >0. When 5 is sufficiently la rge  
6(5 >60) , Fig. 3 shows that  va r ious  l ines fanning out f rom the or igin will cut the graphing function curve  
X= F(0) in s e v e r a l  points ,  i .e. ,  Eq. (2.1) will have mult iple  roots .  The value of 6 o is de te rmined  by the r e l -  
ative a l te ra t ion  in v i scos i ty  as m e a s u r e d  by the d imens ion less  t ime  ~-, being en t i re ly  independent of to, 
the absolute c h a r a c t e r i s t i c  t ime  for  the chemica l  reac t ion .  

F o r  the case  of the z e r o - o r d e r  reac t ion  with the liquid v i s c o s i t y - d e g r e e  of advancement  re la t ion 
sa t is fying the power- funct ion  re la t ion  of (3.5), i .e. ,  with 

., , [ l + 6 v v  w h e n ~  ~< 1, (3.7) 
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Eq. (2.1) can be simplified considerably,  the express ions  for the cr i t ica l  pa r ame te r s  taking the form 

~,_~1 ~ (~V'~ ~+ t (1+~)  2 
o-~ 1 , •  , • v 4--~--' (~>1). (3.8) 

Increas ing the rate of increase  of the viscosi ty  with respect  to time diminishes the value of 5 0 at 
which cr i t ical  effects put in the i r  appearance.  The value of 5 o is, however, l imited on the lower side, pas -  
sage to ~ in (3.7) and (3.8) showing that u ~ o  for  even the most  abrupt increase  in viscosi ty.  Cri t ical  ef -  
fects do not a r i se  when it is a ma t t e r  of a viscosi ty  which diminishes with increas ing degree of advance-  
ment.  

4. There are cases  in which the ~liquid" is no longer fluid at the end of reaction,  a situation formally 
covered by the condition # ,  = ~. Here an increase in the t ime of retention of the liquid in the tube would 
lead to continued increase in the res is tance ,  the lower branch of the S-curve of Fig. 2 coming into coin-  
cidence with the axis of abcissas .  In t e rms  of the one-dimensional  model descr ibed above, the o rde r  of 
the increase  of res is tance  at 0-* co becomes equal to the o rder  of the increase  of v iscos i ty  with the passage 
of t ime. 

Figure 4 can be used in discussing effects related to the rate of increase of res is tance .  If, for ex-  
ample, ~ increases  more  rapidly than required by a l inear law (Fig. 4a), the lower cr i t ical  p ressu re  drop 

and the corresponding liquid flow velocity ~01 = I / 0  i will take on finite, nonzero,  values.  When the in- 
c rease  in X follows a l inear law (Fig. 4b) co I =0, but ~ ~0. If, finally, the increase  in ~ proceeds more  slowly 
than required by a l inear  law (Fig. 4c), ~l =c~ =0. 

F rom this it can be concluded that if the increase  of res is tance with liquid retention t ime is more  
gradual than required by a l inear law, there will then be a cr i t ical  p re s su re  drop below which stat ionary 
liquid flow becomes impossible.  On the other  hand, if the res is tance tends to infinity more  slowly than r e -  
quired by a l inear  law, it will be possible to establish stat ionary f ini te-rate  flow at any nonzero value of 
the p res su re  drop. 

The p rocesses  involved in the clogging of tubular reac to rs  can be considered as special  instances 
of the cr i t ica l  effects under discussion here.  Let  us suppose that the p ressu re  drop in a reaction falls 
below its lower cr i t ica l  value. The system will then tend to pass over  into a stable s tat ionary state co r -  
responding to a point on the lower branch of the S-curve.  If the liquid viscosi ty  at completed reaction 
should prove to be high, it may  be that the upper cr i t ical  p ressure  drop will be g rea te r  than that which can 
be real ized in the reac tor ,  while the s tat ionary states corresponding to points on the lower branch of the 
curve can be established only at ext remely  low flow rates .  At points on the lower branch,  liquid movement 
ceases  when # .  =~o; since ~2 =~  it is impossible to move off of this branch by increasing the p ressu re  drop. 
Here passage to stat ionary states on this lower branch becomes equivalent to reac to r  clogging. 

Other,  more  complex, forms of the ~.=F(0) relation are also possible but they can be analyzed in the 
same manner .  Despite differences in origin and effects,  the analysis presented here has much in common 
with that used in discussing cr i t ical  phenomena of thermal  origin [2]; moreover ,F ig .  1 is reminiscent  of 
the Semenov diagram employed in the theory  of thermal  explosions [3]. In view of this analogy, cr i t ica l  
effects ar is ing from accelera ted  increase in v iscos i ty  might be designated as viscous "explosions." 
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